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Motivation for shape analysis
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Figure : Atrophy in Spinocerebellar Ataxia1

1
Brian C. Jung, e. a., “Principal component analysis of cerebellar shape on mri separates sca types 2 and 6

into two archetypal modes of degeneration,” Cerebellum 11, 887–895 (2012)
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Motivation for interpretable shape analysis
I Shape changes in brain disorders:

I Cerebellum (Spinocerebellar Ataxia)
I Hippocampus-amygdala (Schizophrenia)

Can we create effective tools that allow clinicians to analyze
shape as they would symptoms?

Can we make these tools intuitive to use?

Figure : 3D rendering of a cerebellum from MRI
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What can we do to improve?

I Problem: Classifying shapes into categories (e.g. disease)
I Traditional Machine Learning approaches use

features/keypoints
I Gorelick et al.1, Zhang et al.2

How do we interpret a separator in a feature space?
I Most use parametric classifiers.

I Golland et al.3

Can we get more information by pointing to the training
examples that led us to the conclusion?

1
Gorelick, L., Galun, M., Sharon, E., Basri, R., and Brandt, A., “Shape representation and classification using

the poisson equation,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 28(12), 1991–2005 (2006)
2

Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D. N., and Zhou, X. S., “Towards robust and effective
shape modeling: Sparse shape composition,” Medical image analysis 16(1), 265–277 (2012)

3
Golland, P., Grimson, W. E. L., Shenton, M. E., and Kikinis, R., “Small sample size learning for shape analysis

of anatomical structures,” in [Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000 ], 72–82,
Springer (2000)

Gunnar Atli Sigurdsson, Johns Hopkins University Interpretable shape classification



5/20

Motivation Method Advantages Evaluation

Method
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We use non-parametric exemplar based classification similar to
nearest neighbors

?

Figure : A space of shapes. The test shape belongs to the blue class.

Tells us which shapes we used to reach this conclusion, and
how important they were.
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First, at par with state of the art in 2D Classification
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Figure : Classification accuracy for the vehicle dataset. 1

88.4%

75.0%

50.0%

PCA
Mas

k

SC+D
P

Sym
bo

lic

Heig
ht

Fun
c

ID
SC+D

P

This
wor

k

Figure : Accuracy for the ETH-80 dataset 2

1
Thakoor, N., Gao, J., and Jung, S., “Hidden markov model-based weighted likelihood discriminant for 2-d

shape classification,” Image Processing, IEEE Transactions on 16(11), 2707–2719 (2007)
2

Leibe, B. and Schiele, B., “Analyzing appearance and contour based methods for object categorization,” in
[Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on ], 2,
II–409, IEEE (2003)Gunnar Atli Sigurdsson, Johns Hopkins University Interpretable shape classification
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Intuition

I Finds shapes approximating the shape.
I Uses those to find the class.

????

I In a clinical setting, an interface for analysis:

Next, how to we approximate?
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Classification by sparse recovery

I Typical set up for compressed sensing/sparse recovery
I Dictionary of shapes Φ = [φ1,φ2, . . . ,φK ]

I Find a collection of shapes that fits the test shape y1

x̂ = arg min
x
‖x‖0 subject to Φx = y

ĉ = arg min
c∈C

‖y− Φδc(x̂)‖2

I (shape classes C, δc(x) zeros x’s elements not in c)
I Related to work on sparse dictionaries for segmentation2

1
Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y., “Robust face recognition via sparse

representation,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 31(2), 210–227 (2009)
2

Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D. N., and Zhou, X. S., “Towards robust and effective
shape modeling: Sparse shape composition,” Medical image analysis 16(1), 265–277 (2012)
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How do we represent the shapes such that we can intuitively
reason about the final result?

I Signed Distance Functions (SDF)

I Distance to the shape boundary
I Previously successful in shape

classification1

Figure : Example SDFs for
two shapes

1
Tsai, A., Wells, W. M., Warfield, S. K., and Willsky, A. S., “An em algorithm for shape classification based on

level sets,” Medical Image Analysis 9(5), 491–502 (2005)
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Operations on signed distance functions
I Resizing (Diluting/eroding with a circular element)

I Adding/subtracting constant changes size
I

∑
xiφi + ki =

∑
xiφi +

∑
ki (constants merge)

I Blending
I If 50/50, new boundary is in middle of boundaries.

I Previously used to define the “average shape”1

1
Leventon, M. E., Grimson, W. E. L., and Faugeras, O., “Statistical shape influence in geodesic active contours,”

in [Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on ], 1, 316–323, IEEE (2000)
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What properties emerge?
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Lossless shape representation

I We minimize the difference
between SDFs

I Related to motions of the
shape boundary

I and size of boundary’s
influence zone (Blue)

Corner
shape

SDF of
corner

SDF of
rounded
corner

Difference

Gunnar Atli Sigurdsson, Johns Hopkins University Interpretable shape classification



14/20

Motivation Method Advantages Evaluation

Lossless shape representation

I What constraints on the optimization?
I

∑
xi = 1
I Assuming simple shapes: necessary for minimum
I Necessary for outcome being SDF

I xi ≥ 0
I Avoids inside out shapes

That is, only convex combinations of shapes. (Regularizer)

x̂ = arg min
x
‖Φx− y‖2 s.t. ‖x‖0 ≤ s, ‖x‖1 = 1 and x ≥ 0

Using these properties, this tells us how we manipulated
the shapes to come to our conclusion
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Algorithm Summary

I Related to Orthogonal Matching Pursuit
I Convex constrained quadratic system solved with efficient

quadratic programming
I Add constants to dictionary for invariance to scaling

(MATLAB implementation available online)
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Intuition revisited

I Finds shapes approximating the shape.
I Uses those to find the class.

????

I In a clinical setting, an interface for analysis:
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Evaluation
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3D Classification at par with state of the art
I 93 Subjects from 4 groups (Controls, and 3 types of Ataxia)
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Figure : Classification accuracy for the cerebellum dataset.

Prediction
Controls SCA2 SCA6 AT

Tr
ut

h

Controls 100% 0% 0% 0%
SCA2 8.3% 83.3% 0% 8.3%
SCA6 14.3% 0% 71.4% 14.3%

AT 21.1% 0% 10.5% 68.4%

Table : Confusion matrix for the cerebellar disease classification task.
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Summary

Effective computational shape analysis:
That everyone can use?

I Complete shape information
I Picks few shapes from dictionary to approximate shape
I Uses intuitive shape operations: Resizing and Blending
I At par with state-of-the-art
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The End

I Thanks:
I NIH 2R01NS056307

I Questions?

?
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