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ABSTRACT
Many types of diseases manifest themselves as observable changes in the shape of the affected organs. Using shape
classification, we can look for signs of disease and discover relationships between diseases. We formulate the problem
of shape classification in a holistic framework that utilizes a lossless scalar field representation and a non-parametric
classification based on sparse recovery. This framework generalizes over certain classes of unseen shapes while using
the full information of the shape, bypassing feature extraction. The output of the method is the class whose combination
of exemplars most closely approximates the shape, and furthermore, the algorithm returns the most similar exemplars
along with their similarity to the shape, which makes the result simple to interpret. Our results show that the method
offers accurate classification between three cerebellar diseases and controls in a database of cerebellar ataxia patients. For
reproducible comparison, promising results are presented on publicly available 2D datasets, including the ETH-80 dataset
where the method achieves 88.4% classification accuracy.
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1. INTRODUCTION
A patient suffering from spinocerebellar ataxia will exhibit atrophy in regions of the cerebellum. The ability to understand
brain disease from shape gives the possibility of, for example, diagnosing specific subtypes of ataxia and guide treatment,
particularly if there is no genetic diagnosis. To look for these changes in cerebellar shape, a variety of approaches from
the shape analysis literature could be applied. Most methods first describe the shapes using extracted features and then
apply known classification methods to those features.1, 2 Although feature selection typically reduces the dimension of the
resulting classification stage—and therefore may save computation time—it is always associated with loss of information
and may encourage training errors and lack of generalization to new shapes not included in training data.

Certain scalar fields, such as signed distance functions (SDFs)3–5 or solutions to the Poisson equation,1 are lossless
representations of shapes. For classification of such high dimensional representations, specific classification methods must
be used, such as the method of Wright et al.6 which is a generalization of nearest neighbor and nearest subspace, that finds
a sparse linear combination of a dictionary and uses it for classification. Sparse dictionaries of shapes have proven useful
to model complex shape variations.2 While using a space of scalar fields that is closed under certain linear operations is
appealing (Poisson equation and convex combinations, for example), we found that linear approximations of the space of
signed distance functions gave the best performance, and furthermore, admitted useful properties.

2. SHAPE REPRESENTATIONS
We represent the continuous binary shape A as a mapping from d-dimensional space to a binary value, that is, A : Rd →
[0, 1]. It is convenient to treat A like a set; in particular, we say that p ∈ A if A(p) = 1. The distance function associated
with A is

DA(p) = inf
x∈A

d(x, p) , (1)
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where d(·, ·) is the Euclidean distance metric. The signed distance function (SDF) is defined as7

φA(p) =

{
DA(p) if p ∈ Ac

−DAc(p) if p ∈ A , (2)

where Ac denotes the set complement, i.e., Ac = {p | A(p) = 0}. Given φA, we have that ∂A = {p | φA(p) = 0} and
A = {p | φA(p) ≤ 0}. In practice SDFs are commonly truncated (e.g. φ(p) = 30 if φ(p) > 30).

3. SHAPE CLASSIFICATION BY SPARSE RECOVERY
Our goal is to estimate the class c of an observed shape from among the classes in a set C. For example, C might contain the
classes healthy and diseased for the task of classifying the health of an organ by shape. We use discretized signed distance
functions which are created by stacking all pixels/voxels into large vectors. We form a dictionary of aligned training
shapes and find a sparse representation of a given test shape using shapes (atoms) from the dictionary. The dictionary may
be learned, but care must be taken that the dictionary contains actual examplars for interpretability, as shown in Section 4.
The shape is then classified by finding the object class that minimizes the residual between the test shape and approximate
shape using only the atoms associated with that class. Stated mathematically, we start with a dictionary of shapes,

Φ = [φ1,φ2, . . . ,φK ] , (3)

where each φi ∈ RN is a (vectorized) SDF of a training shape, N is the total number of pixels/voxels, andK is the number
of dictionary elements. Let y ∈ RN be a test shape, and x ∈ RK be a vector indicating the contribution of each atom in our
dictionary when representing the test shape. Assuming the space of elements is closed with respect to linear combinations,
we want y = Φx, where x is of sparsity s (‖x‖0 = s). Drawing from Wright et al.6 we can write this problem ideally as

x̂ = arg min
x

‖x‖0 subject to Φx = y (4)

ĉ = arg min
c∈C

‖y − Φδc(x̂)‖2 , (5)

where δc(x) is defined to be xi when the i-th column of Φ—i.e., i-th atom—belongs to class c and is zero otherwise.
Ideally, the solution x̂ will be sparse and the non-zero entries will all correspond to atoms in the same class. In any case, ĉ
will be selected to be the class from which the reconstructed measurements best fit the observations. It is possible to relate
boundary displacements between shapes to the squared difference of their SDFs. By looking at small perturbations dx for
each point on the boundary x ∈ ∂X for some shapeX (yielding a new shapeX ′) and the resulting changes in the influence
zone of x, Zx ≡ {p | ∀ξ ∈ ∂X, |d(p, x)| ≤ |d(p, ξ)| }. Assuming the operations are defined:∑

x∈∂X

∫
Zx

wx(p)‖dx‖2dp ≈
∫

(φX′(p)− φX(p))
2

dp ≈ ‖φX′ − φX‖2 , (6)

wherewx(p) depends on the direction of dx relative to p. That is, by minimizing the squared error the classification method
is indirectly minimizing the boundary distance between the shapes, where the parts of the boundary are weighted by their
importance. (Corners and other prominent features of the shape have larger influence zones and thus higher weight.)

To avoid “inside-out” shapes in the analysis (−φA(p) = φAc(p)) we draw ideas from the non-negative orthogonal
matching pursuit (NNOMP) of Bruckstein et al.8 to solve Equation (4) with the additional constraint that x ≥ 0. Further-
more, we observe that kφ 6∈ S, k 6= ±1, and assuming objects to be approximately aligned at the origin (∇φi(p) ≈ p/‖p‖)
we have the approximation φi(p) ≈ m + ‖p‖, where m ∈ R. Looking at the error ε between a linear approximation and
the SDF φ(p)

ε = ‖φ(p)− (h+
∑

kiφi(p))‖2 , (7)

and using the approximation for φ, we have a necessary condition for a minimum,
∑
ki = 1 and h+

∑
kimi = m. From

this observation we constrain the linear combinations to convex combinations, by replacing the inversion step in NNOMP
with

x̂ = arg min
x

‖Φx− y‖2 s.t. ‖x‖1 = 1 and x ≥ 0 , (8)



This can be solved by the quadratic program

x̂ = arg min
x

1

2
xTHx + fTx s.t. 1Tx = 1, x ≥ 0 , (9)

where H = 2ΦT
SΦS , fT = −2yT ΦS . This shape classification method is presented in Algorithm 1. MATLAB implemen-

tation and examples are provided on the authors’ website. (http://iacl.ece.jhu.edu/gunnar)

The sparse recovery step maintains all of the properties of NNOMP outlined in8 since it is a special case. Our modifi-
cation makes the optimization both faster, since this uses a quadratic program, and less prone to overfitting, since it avoids
modelling infeasible shapes.

Algorithm 1 Shape Classification using Sparse Convex Combinations

Require: y (Test shape), Φ = [φ1,φ2, . . . ,φK ] (Dictionary), s (Sparsity), C (Classes)
Φ = Φ ∪ {1,−1}
y0
r = y, S0 = ∅

for n=1 to s do
imax = arg max

i⊂[N ]\S
〈φi,y

n−1
r 〉/‖φi‖2

Sn = Sn−1 ∪ {imax}
x̂ = arg minx ‖ΦSnx− y‖2 s.t. ‖x‖1 = 1 and x ≥ 0
yn
r = y − ΦSn x̂

end for
return ĉ = arg min

c∈C
‖y − Φδc(x̂)‖2 (Class), ΦSn (Similar shapes), x̂Sn (Similarity weights)

If dimensionality reduction is required, common methods (PCA, random projections) may not work because of having
to store a large projection matrix in memory. Fortunately, we noticed that taking a random sub-set of the data performed
well in our experiments, which is equivalent to multiplying the data vector in RN by a sub-matrix of the identity matrix
in RN×N . This is because the SDF has some redundancy (see previous discussion on influence zones), and choosing a
random sub-set can be thought of as sampling from these influence zones.

4. OPERATIONS ON SIGNED DISTANCE FUNCTIONS
Because our dictionary elements are SDFs and the space is approximated by convex combinations to produce sparse
approximations to a given shape, it is important to understand how such linear combinations yield new shapes and what
properties this approximation possesses.

4.1 Resizing (erosions and dilations)
Subtracting a constant h from an SDF—i.e., φ′(p) = φA(p)− h—yields a similar shape whose size is either larger (h > 0)
or smaller (h < 0). In fact, the new shape is either the dilation or erosion of the original by a circular structuring element
of size h.9 For sufficiently small h, the function φ′(p) is an SDF. Interestingly, SDFs have the property that a linear
combination of resized SDFs satisfies:

φ(p) =
∑
i

φi(p) + hi = h+
∑
i

φi(p) , (10)

where h =
∑
hi. That is, the individual resizing operations accumulate to a single resizing operation. Therefore, by

adding two constants to the dictionary (one positive and one negative), the framework will adjust for the size of the shape.



4.2 Blending (weighted averages)
Consider the non-negative linear combination of two SDFs: φ′(p) = k1φA(p) + k2φB(p), where k1, k2 ≥ 0. Then by the
definition of an SDF the zero level set of φ′ must satisfy

{p | φ′(p) = 0} = {p | k1φA(p) = −k2φB(p)} , (11)

which implies that the zero level set of φ′ (the shape boundary) is a fraction k1/(k1 + k2) of distance from B’s boundary
to A’s boundary. Through selection of k1 and k2, a new shape A′ can be produced that is a blend of A and B. For example,
by choosing k1 � k2 the resulting shape A′ is much more similar to A than B. The case k1, k2 = 1/2 has been used to
define the average shape.3

Finally, it can be shown by direct substitution that the h level set of the shape φ′ is

{
p
∣∣ φ′(p) = h

}
=

{
p

∣∣∣∣ k1 (φA(p)−
h

k1 + k2

)
= −k2

(
φB(p)−

h

k1 + k2

)}
. (12)

If k1 + k2 = 1, then

{p | φ′(p) = h} = {p | k1 (φA(p)− h) = −k2 (φB(p)− h )} , (13)

which reveals that the h level set of the convex combination of φA and φB is the convex combination of the h level sets
of φA and φB . This is a desirable property because it yields level set functions φ′ that are approximately equal to level set
functions (resized versions) of the blended shapes. This intuition breaks down for large h, where large negative h yields
the empty set for small shapes; but it remains valid over large regions of shape support, especially near the boundaries of
the shapes themselves. Given this observation, we will impose a key restriction in our sparse reconstruction of SDFs: they
are to be restricted to convex combinations.

5. APPLICATIONS
5.1 Interpretability
A typical output from the method applied on cerebellar shapes is presented in Figure 1. An interpretation of the output
is that the similarity weights and the classification, are based on the resized exemplars whose weighted average boundary
most closely approximates the shape—resulting in an intuitive interpretation of the final result.

Figure 1: Elements selected from the dictionary by the method to approximate the shape on the left. The similarity weights
are represented as the width of the border.

5.2 Vehicle Shapes
The first results come from a vehicle video segmentation dataset.10 The dataset contains four types of automobiles. What
makes this a hard dataset, is that the car segmentations include shadow effects and there is large intra-class size difference.
Since the shapes were not aligned initially we performed simple iterative closest point registration to align the shapes before
calculation. The sparsity was set to s = 15 (approximately the size of the smallest class). Results are presented in Figure 2.
We used leave-one-out cross-validation. The method is compared against classification accuracy by shape descriptors such
as curvature (κ+ SVM), Fourier descriptor (FD + SVM), Zernike moments (ZM + SVM), where support vector machine
(SVM) was used for classification, finally we compare against the method from Thakoor et al.10 (HMME+WtL).
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Figure 2: Classification accuracy for the vehicle video segmentation dataset along with example shapes.10

5.3 The ETH-80 dataset
The ETH-80 dataset11 is a dataset composed of 80 objects from 8 categories. Each object is represented by 41 images from
different viewpoints. The validation of an algorithm is intended to be based on a leave-one-object-out cross-validation. The
sparsity parameter was set to s = 15, and for dimensionality reduction we used a random 104 dimensional sub-set (RS104)
(down from 7×106). The following algorithms are presented in Figure 3: PCA on binary masks,11 shape context approach
using dynamic programming11 (SC + DP), Inner-Distance Shape Context with dynamic programming12 (IDSC + DP),
Height Functions,13 as well as Symbolic Representation.14 All of these methods use only the shape of the objects. It is
clear that the proposed framework offers interpretability and performance that is at par with the state of the art.
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Figure 3: Accuracy for the ETH-80 dataset along with example shapes.11

5.4 3D shape classification
To demonstrate the applicability to classification of 3D deformable shapes, the method was applied on a dataset consisting
of automatically segmented 3D human cerebellum masks (T1-weighted MRI). An example 3D cerebellum shape along with
axial slices from the four classes are presented in Figure 4. The cerebellum masks were aligned by rigid transformations and
the brain stem was not included in the mask. The dataset consists of 48 controls, 12 spinocerebellar ataxia type 2 patients
(SCA2), 14 spinocerebellar ataxia type 6 patients (SCA6), and 19 ataxia-telangiectasia patients (AT). The confusion matrix
obtained by leave-one-out cross-validation is presented in Table 1. Since there is no accepted way of performing 3D shape
classification, traditional classification baseline techniques were applied to the dataset using both the binary representation
(Binary) and the signed distance transform (SDF). In Figure 4 classification accuracy is presented for k-Nearest Neighbor
(kNN), Linear Discriminant Analysis (LDA), Random Forest Classifier (RF), and direct application of Wright et al.6 on
binary shapes (Binary + OMP). Furthermore, principal component analysis (PCA) was used for dimensionality reduction
in some cases. These results demonstrate that the proposed method is at par with the best baseline method, and importantly,
is much easier to interpret than for example the LDA decision boundary in the principal component space.
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Figure 4: Classification accuracy for the cerebellum dataset along with example shapes.

Table 1: Confusion matrix for the cerebellar disease classification task.
Prediction

Controls SCA2 SCA6 AT

Tr
ut

h

Controls 100% 0% 0% 0%
SCA2 8.3% 83.3% 0% 8.3%
SCA6 14.3% 0% 71.4% 14.3%

AT 21.1% 0% 10.5% 68.4%

6. SUMMARY AND CONCLUSION
We proposed a dictionary-based shape classification method by combining sparse recovery with signed distance functions
in a holistic framework. The method uses the full information of the shape, which simplifies analysis and feature selection.
By exploiting properties of the shape representation, a variation of the popular Orthogonal Matching Pursuit was proposed,
which offers fast and robust results in practice. We demonstrated the performance of the method in both two and three
dimensional classification tasks, and showed that it achieves state of the art performance. Most importantly, the presented
method allows for resizing and blending of arbitrary shapes from the dictionary to approximate new shapes. The weight of
each shape directly represent its contribution to the final shape, which helps analysis and improves interpretability. Further
research might expand this work to generalize over other possible classes of shapes, such as their unions.
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